300-135 Guide

Quick Guide: ccnp tshoot 300 135 dumps pdf

Want to know Examcollection ccnp tshoot 300 135 pdf Exam practice test features? Want to lear more about Cisco Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) certification experience? Study Exact Cisco tshoot 300 135 answers to Latest tshoot 300 135 pdf questions at Examcollection. Gat a success with an absolute guarantee to pass Cisco ccnp tshoot 300 135 pdf (Troubleshooting and Maintaining Cisco IP Networks (TSHOOT)) test on your first attempt.

Q11. - (Topic 10) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, 

NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the interface Serial0/0/0 configuration enter the ip nat inside command. 

B. Under the interface Serial0/0/0 configuration enter the ip nat outside command. 

C. Under the ip access-list standard nat_trafic configuration enter the permit 10.2.0.0 

0.0.255.255 command. 

D. Under the ip access-list standard nat_trafic configuration enter the permit 209.65.200.0 

0.0.0.255 command. 

Answer:

Explanation: 

On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 


Q12. - (Topic 18) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolate the cause of this fault and answer the following question. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP 


Q13. - (Topic 4) 

Scenario: 

You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems. 

Examine the configuration on R5. Router R5 do not see any route entries learned from R4; what could be the issue? 

A. HSRP issue between R5 and R4 

B. There is an OSPF issue between R5and R4 

C. There is a DHCP issue between R5 and R4 

D. The distribute-list configured on R5 is blocking route entries 

E. The ACL configured on R5 is blocking traffic for the subnets advertised from R4. 

Answer:

Explanation: 

If we issue the "show ip route" and "show ip ospf neighbor" commands on R5, we see that there are no learned OSPF routes and he has no OSPF neighbors. 


Q14. - (Topic 10) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer:

Explanation: 

On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 

Topic 11, Ticket 6 : R1 ACL 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistribution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241… 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

. Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1 

. Look for BGP Neighbourship 

. Sh ip bgp summary ----- State of BGP will be in active state. This means connectivity issue between serial 

. Check for running config. i.e sh run --- over here check for access-list configured on interface as BGP is down (No need to check for NAT configuration as its configuration should be right as first need to bring BGP up) 

. In above snapshot we can see that access-list of edge_security on R1 is not allowing wan IP network 

. Change required: On R1, we need to permit IP 209.65.200.222/30 under the access list. 


Q15. - (Topic 1)

Exhibit:

A network administrator is troubleshooting an EIGRP connection between RouterA, IP address 10.1.2.1, and RouterB, IP address 10.1.2.2. Given the debug output on RouterA, which two statements are true? (Choose two.)

A. RouterA received a hello packet with mismatched autonomous system numbers.

B. RouterA received a hello packet with mismatched hello timers.

C. RouterA received a hello packet with mismatched authentication parameters.

D. RouterA received a hello packet with mismatched metric-calculation mechanisms.

E. RouterA will form an adjacency with RouterB.

F. RouterA will not form an adjacency with RouterB.

Answer: D,F


Q16. - (Topic 8) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

On R1, for IPV4 authentication of OSPF the command is missing and required to configure------ ip ospf authentication message-digest 


Q17. - (Topic 17) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

DSW references the wrong track ID number. 

Topic 18, Ticket 13 : DHCP Issue 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

ipconfig ----- Client will be receiving Private IP address 169.254.X.X 

. From ASW1 we can ping 10.2.1.254…. 

. On ASW1 VLAN10 is allowed in trunk & access command will is enabled on interface but DHCP IP address is not recd. 

On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP 


Q18. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

Answer:

Explanation: 

The BGP neighbor statement is wrong on R1. 


Q19. - (Topic 6) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, and FHRP services, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface port-channel 13 command, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 20,200 commands. 

B. In Configuration mode, using the interface port-channel 13, port-channel 23, then configure switchport trunk none allowed vlan none followed by switchport trunk allowed vlan 10,200 commands. 

C. In Configuration mode, using the interface port-channel 23 command, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 20,200 commands. 

D. In Configuration mode, using the interface port-channel 23, port-channel, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 10,20,200 commands. 

Answer:

Explanation: 

We need to allow VLANs 10 and 200 on the trunks to restore full connectivity. This can be accomplished by issuing the "switchport trunk allowed vlan 10,200" command on the port channels used as trunks in DSW1. 


Q20. - (Topic 15) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. Under the global configuration mode enter no access-list 10 command. 

B. Under the global configuration mode enter no access-map vlan 10 command. 

C. Under the global configuration mode enter no vlan access-map test1 10 command. 

D. Under the global configuration mode enter no vlan filter test1 vlan-list 10 command. 

Answer:

Explanation: 

On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3 


To know more about the 300-135, click here.

Tagged as : Cisco 300-135 Dumps, Download 300-135 pdf, 300-135 VCE, 300-135 pass4sure, examcollection 300-135